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A mesoscopic computational model for polymer networks and composites is developed as a very coarse-
grained representation of the network microstructure. Unlike more complex molecular dynamics simu-
lations, the model network is static unless undergoing deformation. The elastic modulus, which depends
only on the crosslink density and parameters in the bond potential, is consistent with rubber elasticity
theory, and the network response satisfies the independent network hypothesis of Tobolsky. The model,
when applied to a commercial filled silicone elastomer, quantitatively reproduces the experimental
permanent set and stress-strain response due to changes in the crosslinked network from irradiation.

� 2009 Elsevier Ltd. All rights reserved.
1. Introduction

Filled polymeric composites have numerous applications in
science, engineering, and medicine due to their many advantageous
properties, including thermal stability, chemical inertness, and
biocompatibility [1,2]. Over time, changes in the network micro-
structure due to chemical bond scission and crosslinking can alter
these properties [3,4]. In particular, chemical aging can strongly
affect the elastic properties of the network through modifications to
the network as well as changes in the interactions between the
polymer and filler particles. Furthermore, changes in the mechan-
ical properties can depend on the strain history. For example, an
elastomer that undergoes additional crosslinking in a state of strain
can acquire a permanent set or deformation when the applied stress
is removed [5,6].

In many instances, polymeric materials serve as critical
components, so, developing accurate models to predict lifetime
performance in different environments is essential. To describe
permanent set, Tobolsky first hypothesized that new crosslinks
introduced in a state of strain are independent of the original
network formed by crosslinking at zero strain [7]. Thus, the stress
of the material is a linear combination of the contributions from
both networks. This independent network hypothesis can be used
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in conjunction with a variety of constitutive relations from rubber
elasticity theory, including the affine network model and more
sophisticated approaches like the slip-tube model [8]. Com-
parisons of these approaches with molecular dynamics (MD)
simulations have shown varying degrees of success in predicting
permanent set [5,9].

In realistic aging scenarios, elastomeric networks undergo both
crosslinking and scission and a modification to the independent
network hypothesis is required. For the sequential case of forming
a second network by crosslinking while in a state of deformation,
followed by scission of the original network, the concept of a stress
transfer function was introduced [10,11]. Physically, this function
accounts for the fraction of the second network that reinforces the
original, and the crosslink densities in the Tobolsky model are
replaced by effective crosslink densities that incorporate the stress
transfer function. Rottach et al. compared the fractional stress
reduction after scissioning the original network, as computed by
molecular dynamics, to predictions of the slip-tube model incor-
porating the stress transfer function [12]. Recently we demon-
strated the effectiveness of the Fricker stress transfer function in
reproducing permanent set data from experiments with artificially
aged filled siloxane composites [13].

In this investigation, we propose a different approach. Since it is
difficult to derive a theory that can predict macroscopic stresses
from microstructural deformations, many of the predictive consti-
tutive equations are phenomenological or empirical in nature. In an
effort to increase the amount of coarse-graining in molecular
representations, we have developed a mesoscopic numerical model
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that incorporates some details of the microstructure without
resorting to computationally intensive MD calculations, while
maintaining the functionality and predictability required for engi-
neering applications. Similar physics-based models have appeared
in the literature. Arruda and Boyce proposed an eight chain network
model to reproduce the stress response of elastomers for several
types of deformation [14]. Hanson developed a model for filled and
unfilled polydimethylsiloxane (PDMS) by physically modeling
a small fraction of the polymer chains in a given volume [15], where
the polymer intra-chain forces and polymer-filler forces were based
on more detailed MD simulations. In our numerical model pre-
sented here, large sections of the polymer chains are coarse-grained
to a single bond since we are interested in the equilibrium response
prior to and during the aging process. We validated the predict-
ability of the model by comparing with experimental aging data,
which characterized the stress response, changes in the crosslink
density, and permanent set of a filled PDMS elastomer [16].
Fig. 1. Normalized engineering stress (seng¼ sxx/l) for networks with different values
of k and Lx: k/Lx¼ 91.9 kPa (solid black line), k/Lx¼ 998.7 kPa (dashed green line), and
k/Lx¼ 45.2 kPa (red circles) (R0¼ 2.5s). The squares are the experimental values of the
DC-745 response from Chinn et al. [16]. (For interpretation of the references to colour
in this figure legend, the reader is referred to the web version of this article.)
2. Model description

The mesoscopic network model consists of sets of ‘‘bonded’’
nodes, which may represent crosslinks, entanglements, or filler
particles in the material. In this work selected node pairs are linked
by a single ‘‘bond’’, which represents the entire polymer chain
between crosslinks in the network. Initially the connectivity was
arranged on a simple cubic lattice with periodic boundary condi-
tions so that each node had a coordination number or maximum
connectivity of six. The bond interactions are described by a FENE
spring potential, given by [17]
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where k is the spring constant and R0 is the maximum extension. To
stabilize the network at large extensions, a standard Lennard-Jones
(12-6) potential,
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was incorporated between bonded nodes.
Bonds within the initial cubic lattice were randomly selected and

deleted from the lattice to obtain the desired connectivity, typically
corresponding to a network with no more than a tetrafunctional
junction at each node, in a manner similar to Grimson [18]. The
ensemble of bonded nodes was then relaxed via energy minimization
to obtain the initial structure, where the volume was adjusted to
enforce an isotropic pressure constraint on the relaxed state. There-
fore, the resulting domain was not a perfect cube but a slightly rect-
angular box. It is also possible to generate the network by randomly
placing nodes within a cubic domain and introducing sufficient bonds
between neighbors to produce the desired number of crosslinks.

The deformation and response of the network model was
computed with the LAMMPS parallel molecular dynamics code [19].
For this initial evaluation of the model we limited our tests to
uniaxial extensions to mimic the experiments of Chinn et al. [16]. Our
molecular simulations were static without thermal fluctuations, and
consisted of a series of small deformations, followed by an energy
minimization step to obtain the equilibrium node positions for
the applied deformation. The networks were deformed by stretching
the domain along the x-axis from Lx to lLx at a constant volume so the
lateral dimensions were contracted by a factor of l�1/2, where l is the
extension ratio. The energy minimization step ensured that the net
force on each node was near zero. We compared the network stress
responses for different energy and force tolerances to ensure these
values were small enough to allow the model to reach equilibrium.
The stress response in the direction of extension is equivalent to the
deviatoric part of the stress tensor, sxx ¼ 3=2ðPxx � 1=3

P
i PiiÞ,

computed during the simulation, where the coefficient of 3/2 arises
from the constant volume constraint [5], and the second term in the
parenthesis is the hydrostatic pressure.

In this work, we varied the parameters k and R0 in Equation (1) to
fit experimental results and fixed b¼ (3/2)s and 3¼ k/30, where b is
the initial bond length between nodes. We selected a cubic lattice
with 16 nodes per dimension for a total of 4096 sites. Preliminary
calculations revealed the stress response was independent of the
node number for networks with eight or more nodes per dimension.
Larger networks with more nodes are more robust at higher defor-
mations where the bonds are stretched close to their maximum
extension. Since we were essentially computing a series of static
configurations, an extension/compression calculation could run on
a single processor and required no more than a few minutes to
complete.
3. Results and discussion

3.1. Single-stage network model

We performed a set of parametric studies to evaluate the
response of the network model to the adjustable parameters. Since
the FENE bond potential depends linearly on k, we expected a linear
relationship between it and the computed stress. Furthermore, we
expected that the stress and system size, expressed as Lx¼ 24s, are
inversely proportional. To verify these claims, we computed the
stress response to uniaxial stretch for a variety of networks with
a wide range of k and Lx values. In Fig. 1, which shows the
normalized engineering stress for selected networks with a fixed
crosslink density and R0¼ 2.5s, all the curves nicely collapse, con-
firming the linear relationship between stress and k and L�1

x over
a large range of uniaxial deformations. The upswing in the stress is
due to the finite extensibility. In the small strain limit the network
recovered the behavior of the phantom network model [20], and
produced a constant shear modulus. However at very small strains
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(l< 1.03), the model exhibited some non-linear behavior, likely due
to the Lennard-Jones contribution.

To test the robustness of the model, we generated three
different network ensembles by removing a different set of random
bonds from the initial cubic lattice and compared the stress
response of each ensemble using the same k and Lx values. For the
range of deformations in Fig. 1, the ensemble standard deviation for
the stress was 1.2% of the ensemble average. Therefore the results
were quite repeatable for different network realizations.

Networks with varying crosslink densities were created by
changing the number of initial bonds in the lattice, as described in
the previous section. Since the number of nodes (or crosslink sites)
remains constant, this physically corresponds to changing the
polymer density or number of chains, which is proportional to the
crosslink density. Another way to express the crosslink density in
the domain is by the ratio of the number of bonds to the total bonds
available in the network, referred to herein as the conversion, p. In
the initial cubic lattice the total number of initial bonds before
depletion was three times the number of nodes. Rubber elasticity
theory predicts that stress is proportional to p� pgel, where pgel is
the conversion ratio at the gel point, since the bonds formed below
the gel point do not contribute to the elastic response. The gel point
for this network model should be approximately equal to the
percolation bond threshold for a simple cubic lattice, or 0.25 [21].
To test this assumption, we computed the stress at an extension
ratio of 1.4 for networks with crosslink densities near the perco-
lation threshold and defined the gel point where the stress had
a sharp transition from near zero to non-zero values. As indicated in
the inset of Fig. 2, we estimated the gel point to be pgel¼ 0.29,
a value slightly higher than the theoretically predicted cubic lattice
percolation threshold.

We also tested the response for crosslink densities above the gel
point, and the final stresses at l¼ 1.4 are plotted in Fig. 2 as a func-
tion of both the relative conversion ratio, which is proportional to
crosslink density, and R0. For large R0, the relationship between
stress and crosslink density is linear, consistent with rubber elas-
ticity theory [5]. However, for smaller R0, the relationship becomes
non-linear due to the finite extension effects of Eq. (1), which
manifested as an upswing in the stress-elongation response curve.
Fig. 2. Engineering normalized stress of the network model at a strain state of l¼ 1.4
for different relative conversion ratios, p, and maximum bond extensions. The squares
correspond to networks with R0¼10s, and the circles correspond to networks with
R0¼ 2.5s. The inset figure shows the network responses as a function of absolute
conversion ratio to determine the value of pgel¼ 0.29.
3.2. Two-stage network model

To simulate material damage from radiation, the network was
modified through a series of bond breaking (scission) and forma-
tion (crosslinking) steps. With the system in a strained state, we
first performed a scission step, in which bonds were randomly
selected and deleted from the network. Next, in the crosslinking
step, a node with less than six bonds was randomly selected and
a list of its neighboring nodes within a certain cutoff distance and
having less than six bonds was generated. After randomly selecting
from this neighbor list, a bond was then formed between the two
selected nodes. Finally, this new network configuration was relaxed
via energy minimization to its new static configuration. Note that
there is no time scale, or chemical reaction rate, in this process;
bond breaking and formation occur instantaneously.

To evaluate the predictability of the model, we compared our
results to experiments performed by Chinn et al. [16], who exposed
samples of commercial, filled siloxane elastomer (DC-745) under
uniaxial strain to controlled dosages of g-radiation from a Co-60
source. After removing the applied strain, the permanent set and
stress response of the aged samples were measured. Nuclear
magnetic resonance (NMR) and swelling experiments were also
conducted to determine the net change in crosslink density. Cross-
linking reactions were more prevalent than scission during the
exposure to g-radiation and the change in density was independent
of the stretch ratio, l1.

By fitting the experimental data with a two-stage network
model and the Mooney-Rivlin materials equation, we established
a linear relationship between the applied radiation dosage and the
fraction of chain scissioning, xsci¼ nsci/(n0� ngel), and new network
crosslinks, xx1¼ n1/(n0� ngel), relative to the initial crosslink density,
n0, where n1 is the crosslink density of the second network, and ngel

is the gel point crosslink density [13]. Thus we obtained a direct
relationship between the change in the number of bonds in the
network model and the experimental dosage.

We first considered the case when no scission occurs so the
original network is unchanged while a new set of bonds is intro-
duced in the strained state. According to the independent network
hypothesis of Tobolsky, the second network is in an unstrained
state and therefore should have no contribution to the stress at the
stretch ratio in which it is added. Fig. 3 shows the stress prior to and
after introducing the second set of crosslinks for various initial
conversion ratios, p. The stress response at a new network ratio of
zero corresponds to the stress of the original network. The stress
remains largely unchanged for all the networks except for the
conversion ratio of 0.41 (the highest crosslinking investigated
here). There is a slight upward trend in the stress with crosslinking
for the two lowest density networks, whereas the higher cross-
linked networks exhibit a decreasing trend, both most likely caused
by the non-linearity of the springs. However, these changes are
small and overall, the results demonstrate the model’s consistency
with the independent network hypothesis.

Incorporating scission into the model allowed direct comparisons
with the experiments of Chinn et al. [16]. We first fit the experi-
mental data for a pristine siloxane sample (square points in Fig. 1) to
the normalized stress-strain response using a ratio of k/Lx¼ 91.9 kPa,
R0¼ 2.5s, and a relative conversion ratio, p� pgel of 0.31. It is
apparent that the model captures the correct elastic modulus and
somewhat under predicts the extent of the experimental upswing at
the highest strain (last point). The upswing in the model curve is less
pronounced and occurs at a larger stretch ratio of l¼ 1.5.

We checked the consistency of the model with the k/Lx fitting
parameter by independently estimating a spring constant and
length scale. The length scale can be obtained by comparing the
number of bonds in the model to the crosslink density of the DC-



Fig. 4. Permanent set experimental data of Chinn et al. [16] (lines) and model
predictions (symbols) for a range of radiation dosages applied at strained states of
l1¼1.2 (blue: triangles and dash-dot line), l1¼1.4 (black: circles and dashed line), and
l1¼1.9 (green: diamonds and solid line). Error bars indicate the standard deviation for
three independent ensembles. (For interpretation of the references to colour in this
figure legend, the reader is referred to the web version of this article.)

Fig. 3. Engineering stress after networks are crosslinked in a strained state (l¼ 1.4) for
different initial crosslink densities and density of second network. The stress at zero
radiation dosage is the value prior to adding the second network and is also indicated
by the horizontal dashed lines. Symbols correspond to initial conversion ratio,
p0� pgel: 0.073 (circles), 0.16 (squares), 0.31 (triangles), and 0.41 (diamonds). No
scission occurs in the data shown here.
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745 sample. In our previous work [13], we estimated the elastic
modulus to be 933 kPa which corresponds to a crosslink density of
2.24�108 mm�3 from the relationship Gwn0kT. Based on the
selected conversion ratio, the network model is then equivalent to
a 31 nm cube of this material. The entropic spring constant of an
ideal chain is given by kideal¼ 3kT/<R2>, where<R2> is end-to-end
distance of the chain. For this estimate, we defined an effective or
average network spring constant based on the mean-squared bond
distance between crosslinks in the microstructure. From our model
this distance is w1.8 nm and therefore the estimate for k/Lx based
on the properties of DC-745 and the physical assumptions in the
network is 120 kPa. Considering the amount of coarse-graining in
this approach it is encouraging to find the fitted (91.9 kPa) and
estimated values of this ratio were within a factor of 1.3.

In addition to the entropic spring behavior of the polymer
molecules, the importance of the contribution of entanglements to
the shear modulus is well established [22]. Our model does not
explicitly account for the latter. However, since the effective spring
constant of the bonds in our network was chosen as a best fit to the
response of the virgin experimental specimen, the contribution of
the entanglements is reflected in this value albeit not explicitly
modeled.

With the model parameters set, we calculated the permanent
set at radiation dosages, D, at deformations, l1, corresponding to the
experiments. The amount of scission and crosslinking was related
to the radiation dosage using the previously calibrated relation-
ships [13]. The parameters describing the additional bonds in the
second network were identical to those in the original network.
After the scission, crosslinking, and relaxation steps to incorporate
the second network, the domain was gradually compressed, with
the previously described intermediate energy minimization steps,
to a state of zero stress, thus providing the domain recovery ratio,
ls. The permanent set was calculated from the definition,

Ps ¼
ls � 1
l1 � 1

: (3)

Fig. 4 compares the permanent set predictions from the meso-
scopic numerical model and the corresponding experimental
values. Each point represents the average of three ensembles of
random scission and crosslinking, and the error bars correspond to
the standard deviation. Considering the simplicity of the model, the
agreement is excellent, with the largest difference of 10% occurring
at the 170 kGray dosage. Also note that the model correctly
reproduced a decrease in permanent set with increasing l1,
whereas the experimental data deviated from this behavior at the
higher radiation dosages. There may have been some experimental
error measuring the permanent set at smaller extensions, however,
despite the uncertainty, the range of permanent set is closely
matched between the data and the model at each radiation dosage.

In our previous work, we incorporated the Fricker stress transfer
function into the Mooney-Rivlin materials model and obtained
a good fit to the permanent set data as well [13]. Unlike constitutive
models however, the mesoscopic network does not specifically
incorporate a stress transfer function, to account for feedback
between the first and second network when additional crosslinks
are created. Thus, the stress transfer effect is intrinsic to the model
and the way the network is modified under tension, which is why
the permanent set predictions were comparable to experiment. For
example, in this model, when part of the original network
undergoes scission in a state of strain, there is a corresponding
decrease in stress due to the loss of connectivity. However, when the
same amount of scission is applied along with additional cross-
linking, the drop in stress is not as large since the second network
can accommodate some of the stress. This is precisely the kind of
feedback effect described by the stress transfer function. Note that
Fig. 3 confirms there is no stress transfer when no scission occurs in
the original network. Furthermore, it is worthwhile to note that the
parameters in the Mooney-Rivlin two-stage equation were obtained
by fitting to the permanent set data, whereas the parameters for this
mesoscopic model were solely derived from the stress response of
the pristine sample. The permanent set values were predictive.

Finally, we performed additional extension simulations for the
modified networks simulating irradiation at 170 kGray to compare
the predicted material responses with the experimental samples.
As shown in Fig. 5, the agreement at small stretch ratios is excellent
and the increasing elastic modulus with decreasing l1 is repro-
duced. At larger deformations, the network model and experiment



Fig. 5. Normalized stress response of experimental siloxane composite samples of
Chinn et al. [16] (squares) after irradiating at 170 kGray at different stretch ratios, l1,
and response of the mesoscopic model (lines).
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deviate, most likely due to finite extensibility effects. Presumably
we could improve the model by adjusting the maximum bond
extension to better capture the upswing.

4. Conclusions

We have developed a computational mesoscopic model of
polymer networks using a very coarse-grained approach that
consolidates the segments of the polymer chains between cross-
links into a single bond. By ignoring the dynamics of the chains, only
the static configuration of this heterogeneous network contributed
to its material properties. Three free parameters, the spring
constant, k, maximum bond extension, R0, and crosslink density or
conversion ratio, p, characterized the initial network. For relatively
large maximum extensions, the elastic modulus varied linearly with
both spring constant and crosslink density; hence, only two free
parameters were required to describe the network.

Since there were no underlying dynamics in the network, bonds
could be added and removed instantaneously. By first considering
only crosslinking, we demonstrated the stress remained constant
when adding the second network in a uniaxially strained state and
therefore the model was consistent with the independent network
hypothesis. Upon fixing the free parameters by fitting the stress
response to data for a commercial filled siloxane, the model pre-
dicted the amount of permanent set and increase in elastic modulus
after exposure to a radiation source. No other assumptions were
needed to obtain remarkable agreement with the experimental
data, and the network automatically reproduced the effects of stress
transfer. These results also indicate that reducing the maximum
bond extension may further improve the agreement with experi-
ments at larger deformations. We plan to continue development of
this model and will explicitly include the effect of filler particles by
creating a heterogeneous bond structure. Comparisons with foams
and other filled elastomers are also in progress.
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